Lyapunov function proof of Poincaré's theorem

نویسندگان

  • Wassim M. Haddad
  • Sergey G. Nersesov
  • VijaySekhar Chellaboina
چکیده

One of the most fundamental results in analysing the stability properties of periodic orbits and limit cycles of dynamical systems is Poincaré’s theorem. The proof of this result involves system analytic arguments along with the Hartman–Grobman theorem. Using the notions of stability of sets, lower semicontinuous Lyapunov functions are constructed to provide a Lyapunov function proof of Poincaré’s theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

A Constructive Proof of ISS Small-Gain Theorem using Generalized Scaling

This paper presents a Lyapunov-type proof of the Input-toState Stable(ISS) small-gain theorem. The proof given in this paper demonstrates how to construct a Lyapunov function explicitly, which contrasts with existing proofs based on input-output analysis. The Lyapunov functions are constructed by selecting state-dependent scaling functions properly. The construction of Lyapunov functions motiva...

متن کامل

An alternative converse Lyapunov theorem for discrete-time systems

This paper presents an alternative approach for obtaining a converse Lyapunov theorem for discrete–time systems. The proposed approach is constructive, as it provides an explicit Lyapunov function. The developed converse theorem establishes existence of global Lyapunov functions for globally exponentially stable (GES) systems and semi–global practical Lyapunov functions for globally asymptotica...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

A “ Universal ” Construction of Artstein ’ S Theorem on Nonlinear Stabilization

This note presents an explicit proof of the theorem –due to Artstein– which states that the existence of a smooth control-Lyapunov function implies smooth stabilizability. Moreover, the result is extended to the real-analytic and rational cases as well. The proof uses a “universal” formula given by an algebraic function of Lie derivatives; this formula originates in the solution of a simple Ric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2004